
Self-Terminating Write of Multi-Level Cell ReRAM
for Efficient Neuromorphic Computing

Zongwu Wang1, Zhezhi He1†, Rui Yang1, Shiquan Fan2, Jie Lin3, Fangxin Liu1,4, Yueyang Jia1, Chenxi Yuan2

Qidong Tang1, Li Jiang1,4,5†
1Shanghai Jiao Tong University, 2Xi’an Jiao Tong University, 3University of Central Florida

4Shanghai Qi Zhi Institute, 5MoE Key Lab of Artificial Intelligence, AI Institute, Shanghai Jiao Tong University

Abstract—The Resistive Random-Access-Memory (ReRAM) in
crossbar structure has shown great potential in accelerating the
vector-matrix multiplication, owing to the fascinating computing
complexity reduction (from O(n2) to O(1)). Nevertheless, the
ReRAM cells still encounter device programming variation and
resistance drifting during computation (known as read distur-
bance), which significantly hamper its analog computing preci-
sion. Inspired by prior precise memory programming works, we
propose a Self-Terminating Write (STW) circuit for Multi-Level
Cell (MLC) ReRAM. In order to minimize the area overhead,
the design heavily reuses inherent computing peripherals (e.g.,
Analog-to-Digital Converter and Trans-Impedance Amplifier) in
conventional dot-product engine. Thanks to the fast and precise
programming capability of our design, the ReRAM cell can possess
4 linear distributed conductance levels, with minimum latency
used for intermediate resistance refreshing. Our comprehensive
cross-layer (device/circuit/architecture) simulation indicates that
the proposed MLC STW scheme can effectively obtain 2-bit
precision via a single programming pulse. Besides, our design
outperforms the prior write&verify schemes by 4.7× and 2× in
programming latency and energy, respectively.

Index Terms—ReRAM, Programming, Multi-Level Cell, Read
Disturbance

I. INTRODUCTION

The Resistive Random-Access-Memory (ReRAM) is a two-

terminal device with programmable resistance, ranging from

Low-Resistance State (LRS) to High-Resistance State (HRS),

for information storage [1]. It has attracted tremendous interest

in the past decade from both academia and industry, owing to

its outstanding device properties, including high density, non-

volatility, large ON/OFF ratio, etc [2], [3]. Besides its superior

characteristics as the main memory alternative, the ReRAM

cells wired in the crossbar structure [4], [5] have been widely

adopted as the dot-product engine since its in-situ current-

weighted summation operation intrinsically conducts Vector-

Matrix Multiplication (VMM). Such ReRAM crossbar design

can significantly simplify the computation complexity of VMM

from O(n2) to O(1), thus bringing great opportunities in ac-

celerating VMM-intensive applications, e.g., the neural network

inference especially. Meanwhile, due to the process variation

and the stochastic switching mechanism, the programmable

resistance range and programming sensitivity differ from cycle

to cycle and device to device. Generally, such write variation

Li Jiang and Zhezhi He are the corresponding authors.

brings a great challenge for both the conventional memory

function and VMM acceleration. When using ReRAM for data

storage, the write variation can significantly lower the sense

margin (between LRS and HRS), thus leading to erroneous

read results. Such a sense margin is further compromised

when using the ReRAM crossbar for VMM acceleration, as

multiple ReRAM cells are in the sensing (i.e., computation)

path simultaneously.

As the countermeasure to the ReRAM write-variation, nu-

merous approaches have been proposed from the device- [6],

circuit- [7], or algorithm-level [4], which are summarized as

follows: Device-level, although the device experts are devoted

to fundamentally address the aforementioned ReRAM program-

ming variation from the device physics perspective, due to the

immature of ReRAM technology and the ReRAM switching

mechanism remains uncertain [6], such objective can hardly

be achieved within a short time. Circuit-level, prior works

have brought up various circuit-level countermeasures [7]–[11].

However, all those prior designs partially fulfill the ReRAM

crossbar of VMM acceleration requirements in terms of the

ReRAM set (i.e., LRS) precision, and area efficiency, but the

fast programming of MLC (Multi-Level Cell) ReRAM is still
absent. Algorithm-level, the most widely adopted algorithm-

level technique is to incorporate the variation within the model

training process [12]. It leverages the fault tolerance capability

of the neural network. However, the time-consuming training

and accompanied accuracy degradation make such a solution

infeasible in practice.

To summarize the discussion above, as a detour of mitigat-

ing the ReRAM write variation, the circuit-level is the most

promising and practical strategy. In this work, we propose a
Self-Terminating Write (STW) scheme to enable MLC ReRAM
crossbar programming with high precision and low latency, for
variation efficient VMM acceleration. Our contributions in this

work are enumerated as:

• To our best knowledge, we are the first to propose a valid

self-terminating write circuit for MLC ReRAM, perform

ReRAM crossbar set and reset in a fast and precise

fashion, and the compact model in [13] is calibrated for

better characterizing the non-ideal ReRAM variation.

• Our proposed STW circuit heavily reuses the original

ReRAM peripheral and shares the circuit for set and reset

(a) Parameters fitting of ReRAM compact
model w.r.t DC programming experiment
results.

Parameter Unit
Value

SET RESET

g0 nm 0.23

V0 V 0.364

ν0 m/s 15.17

I0 mA 0.34

α 1 1.124

β 1 3.208 5.396

γ0 1 20.792 21.075

EA 1 0.918

δ0g - 1.2e-2

gmin* nm 0.6

gmax** nm 2

(b) Fitting Coefficients for ReRAM
compact model.

(c) Normal probability paper: variation-related parameters fitting of ReRAM
compact model with pulse programming experiment results.

Fig. 1: Compact ReRAM modeling w.r.t our experimental

measurement. (a) DC programming curve fitting, (b) Fitting

coefficients. (c) Pulse programming curve fitting.

to minimize area overhead. In comparison to prior STW

designs, our proposed method achieves 2-bit precision

with similar area utilization, while the prior designs [7],

[10], [11] can only perform STW for SLC (Single-Level

Cell) ReRAM. Compared to the write&verify design [14],

[15] on MLC ReRAM, our design reduces the program-

ming latency and energy by 4.7× and 2×, respectively.

• We conduct cross-layer simulation (device/circuit/system)

to validate our design. With neural networks of VGG

and ResNet inference on ReRAM-based accelerator, the

impact of the read disturbance on system performance is

evaluated to enlighten further studies.

II. PRELIMINARY

A. ReRAM and ReRAM Crossbar

1) ReRAM Device Modeling and Variation: By far, in terms

of the mechanism of ReRAM resistance switching, the for-

mation and rupture of the conductive filament that consists

of oxygen vacancies are the most well-accepted theory by

the community [13], [16]. To consider the intrinsic switching

variability of ReRAM (i.e., programming variation) and to fit

the I-V characteristics of our fabricated ReRAM cell, we use

the popular filament model introduced in [13] for analysis.

Through the curve fitting process w.r.t the experimental data (I-

V curve as shown in Fig. 1a), the acquired fitting coefficients

are listed in Fig. 1b. The notations are identical as used in [13],

which will not be specified here due to the space limit. The

setting of other unlisted parameters is identical as in [13].

One of the most critical challenges of MLC ReRAM that

can deteriorate the sensing margin between the two adjacent

Fig. 2: Read disturbance effect is investigated by fitting the

relationship between conductance shifting and read cycles, the

measurement data origins from [18].

resistance levels is the Cycle-to-Cycle (C2C) switching vari-

ability. The C2C variation, known as temporal non-uniformity,

can result in random switching speed during each ReRAM

programming cycle. For modeling the temporal non-uniformity,

the C2C fluctuation is characterized by the parameter δ0g
in Fig. 1b, which correlates to the amplitude of the additive

random disturbance on filament formation and rupture speed.

Setting δ0g = 1.2e−2, the 104 trials Monte Carlo simulation is

shown in Fig. 1c indicates both the LRS and HRS resistance

distribution fit well w.r.t our measured data reported in [17].

2) ReRAM Device Read Disturbance Modeling: In addition

to the variations mentioned above, we consider the read dis-

turbance issue. Read disturbance refers to the memory states

change after a high number of the read operations, thus the

information stored is unintentionally tampered [19]. Read dis-

turbance effect is a key contributor to the non-volatile memory

reliability issues in ReRAM [20]. According to [20], even read

verification during the write procedure can disturb the ReRAM

conductance, thus triples the programming time. As shown

in Fig. 2, we modeled the effect of read disturbance by fitting

the measurement data in [18] via the least-squares method, and

the result indicates that the HRS is more vulnerable to read

disturbance which coincides with [21].

B. Related Works and Motivation

A countermeasure against the ReRAM programming varia-

tion summarized in Section I, due to the scope of this work, we

will focus on circuit-level solutions. Prior circuit-level solutions

can be categorized into twofold: write&verify (w&v) and self-

terminating write, which are specified hereafter.

1) Write&Verify Method: The w&v method [8], [9] iter-

atively performs the ReRAM write with a high-frequency

voltage pulse followed by verifying the programmed ReRAM

resistance, until the target ReRAM cell reaches the target value.

The drawbacks of such w&v method can be enumerated as: 1)

multiple cycles are required, which incurs high programming

latency (e.g., [9] shows programming a VGG-16 network

with 138M weights takes 46mins); 2) high hardware cost for

conducting parallel ReRAM write.

2) Self-Terminating Write: Unlike the w&v methods utiliz-

ing multiple cycles with programming pulses, the STW method

only applies a single wide programming pulse. Four STW

circuits are chosen here as the competing designs, which are

developed by [10], [7] and [11] respectively, where [10] is

W
L

D
ri

ve
r

BL
 D

ri
ve

r VBL1

VBLn

VWL1

VWLn
ISL1 ISLk ISLm

MUX

Vrst

V
src

+
-Vref

Vsen

X2

N
-b

it
D

A
C

Controller

N-bit
Register

Vgating

Vgating
ENn

M1

M4

M3

M2

R1

X3

X1

+
-Vreff

Vsen

X2

N
-b

it
D

A
C

Controller

N-bit
Register

Vrst
X1

VgatingVg

M1

M44

M3

MMM2222

R1

V
src

Vgating
ENn X3

V
s

c

A
B

C

V
BL

out+
out-

M5

Fig. 3: ReRAM-based dot product accelerator embedded with

STW scheme. The overall architecture consists of three parts:

(1) The ReRAM cell array with white background. (2) The

peripheral modules for dot product acceleration with khaki and

blue background. (3) The additive module for STW implemen-

tation with green background.

the first work that develops the STW on SLC ReRAM. It

uses the current mirror for programming current monitoring,

a verdict module receiving the feedback signal, then cut-off

the bias voltage once target resistance is reached. This design

owns two main drawbacks: 1) the current mirror failed to

copy the programming current for sensing accurately; 2) the

design introduces a large area overhead due to two additional

comparators and a verdict module. Other designs proposed

in [11] replace the comparator with an inverter for area ef-

ficiency. However, these are ineffective designs due to : 1) the

Process/Voltage/Temperature (PVT) variation can easily affect

the inverter switching threshold, making it imprecise for the

application. 2) the D Flip-Flop is used in these designs, which

is an area-hungry unit. 3) the set and reset termination can

not share the same circuit in these designs. In contrast to

the current-mode schemes in [10], the voltage mode design

proposed in [7], [22] significantly simply the sensing and ter-

mination circuitry for set operation, with only utilizing several

transistors and an inverter. For the reset operation, [7] uses a

comparator together with another swing detector. Overall, [7]

is still not robust to PVT when performing the set operation

within one cycle, and the reset operation can not share the

simple circuit of the set operation.

III. PARALLEL SELF-TERMINATING MEMORY WRITE

A. Overview of Self-terminating Write Architecture

In this section, a novel parallel STW scheme embedded

into the ReRAM-based dot product accelerator is introduced.

0.0
1.1
2.2
3.3

0.0
1.1
2.2

0.96
1.20
1.44
1.68

0.00
0.63
1.26
1.89

0.0
1.1
2.2
3.3

0.0
2.0M
4.0M
6.0M
8.0M

0.0
1.6
3.2

0.0
1.1
2.2
3.3

0.0
1.1
2.2
3.3

0.0 200.0n 400.0n 600.0n
10p
1n

100n
10μ

Vwl (V
)

 Vwl

SET Duration RESET Duration

Vbl (V
)

 Vbl

Vrst
 (V

)

 Vrst

Vsl
(V)

 Vsl

Vsrc
 (V

)

 Vsrc

 Rrram

ctr
l (V

)
 ctrl

Vref
 (V

)
 Vref
 Vsen

Vgati
ng (V

)

 Vgating

t1 t2

Iw
rite

 (A
)

Time (s)

 Iwrite

Iwrite cut-off Iwrite cut-off

Fig. 4: Transient waveform with self-terminating function for

both set and reset operation.

It turns off the single writing pulse automatically once the

targeting resistance value is programmed, thus the power

consumption and the write stress issues can be effectively

suppressed. The overall architecture of the proposed STW

scheme consists of three parts, and is shown in Fig. 3. Part one:
the ReRAM cell array is shown with white background, and

the aggregate current on each SL is elected with a multiplexer.

Part two: the peripheral modules for dot product acceleration,

consist of a TIA and a SAR-ADC. The TIA shown in Fig. 3 A
with khaki background converts the SL current to voltage

linearly, and the SAR-ADC in Fig. 3 B with blue background

quantifies the corresponding voltage. Part three: the additive

module for embedding the STW scheme in the dot product

accelerator, shown in Fig. 3 C with green background.

B. Operating Mode

The proposed STW scheme is embedded in conventional

accelerate architecture seamlessly, thus it can switch between

three modes with a friendly interface protocol.

1) Conventional inference mode: The STW scheme of this

work is embedded into the conventional dot product accelerator

seamlessly. The ENn is an enable signal for STW mode, which

is active low. Thus, ENn keeps high in inference mode, forcing

Vgating low to cut off the M1 and M3, and the M2 and M4

connect the TIA to SAR-ADC.

2) Reset termination implementation: During STW mode,

the ENn is low. The ReRAM under reset is activated with

VBL = 0V , and Vrst is applied on the non-inverting terminal of

X1. In the beginning, the ReRAM is in LRS, and the peripheral

devices dominate the voltage drop. It means VSL is lower than

Vrst, thus the amplifier X1 outputs a high voltage. Meanwhile,

Vsen is lower than Vref , which causes Vgating to hold high for

switching on M2 and switching off M1 and M3, thus the SL

voltage can be clamped at Vrst. As the ReRAM resistance

increasing, Vsen increases simultaneously. Once Vsen reaches

the level of Vref , Vgating switches to high to turn off M2 but

turn on M1 and M3. The gate of M4 discharges through M3

and M5 to floating SL, and terminates the reset procedure.

TABLE I: Comparison between Proposed STW Methods (Amp:

Amplifier)

Structure Area Terminate Precision

This work 2Amp+5T+NOR Medium both 2 bits

JSSC-2013 [10]
2Amp+R+30T
+DelayUnit+others

Large both 1 bit

ISSCC-2014 [22] 4T Small set 1 bit

IEDM-2017 [7]
RESET: Amp+4SW+6T
SET: 5T

Medium both 1 bit

ISSCC-2021 [23]
2Amp+R+5T+3INV
+AND+Delay Unit

Large set 1 bit

3) Set termination implementation: The set termination is

implemented similar to the reset operation with the ENn low.

The ReRAM under set is activated with a high VBL and Vsrc =
0V , a proper Vrst is applied on the non-inverting terminal of X1.

In the beginning, the ReRAM cells under set in HRS dominate

the voltage drop. The Vgating is low to turn off M1 and M3,

and the M2 is turned on. As the resistance of ReRAM cells

increasing, the Vgating flips eventually, and turns on the M1 to

pull up the SL to terminate the set procedure. Fig. 4 shows

the transient curve of self-terminating for both set and reset.

Although the set- or reset-voltage is sustained for 200ns, once

the Vsen reaches the reference voltage Vref , Vgating is triggered

to terminate the programming procedure, and the write current

is cut off simultaneously at t1 for the set operation and t2 for

the reset operation.

C. STW Performance Analysis

In this part, the self-terminating precision is analyzed, and an

in-depth comparison of this work and prior STW schemes [7],

[10], [22], [23] is conducted in Table I. The first work for

STW implementation is proposed in [10], and it suffers from

large area cost and imprecise programming. The feedback loop

of this work is complicate, which not only induces area cost,

but also contributes to imprecise writing. In our scheme, the

area is optimized up to 5× reduction. Furthermore, the simpler

implementation boosts the feedback speed by 2×, which is very

helpful to improve programming accuracy. Besides that, the

current mirror in [10] also deteriorates the feedback precision.

The scheme in [22] dominates the area cost over the designs

in Table I, but only the set operation is under rough control. The

design in [7] is similar to [22], whose area cost is comparable

with our work, but the set and reset self-terminating function

can not be achieved via sharing the same circuit, and the current

mirror also deteriorates the performance. The STW scheme

proposed in [23] is similar to the design in [10], and the large

area cost and imprecise termination also exist. In summary, the

self-terminating write scheme proposed in this work conducts

much precise programming control with the similar hardware

utilization of the state-of-the-art STW schemes. Moreover, the

heavy circuit reuse further saves the hardware cost (9T), thus

higher precision can be achieved with lower cost.

IV. EVALUATION

A. Experimental Setup

We utilize multiple EDA tools to conduct the de-

vice/circuit/architecture cross-layer simulation in this work. At

(a) Histogram of 4 programmed conductance levels of Δg = 460nS in
the setting of “no margin with linear ΔGi”.

(b) Histogram of 5 programmed conductance levels in the setting of
“10% margin with non-linear ΔGi”.

Fig. 5: Maximum number of conductance levels can be

achieved through search process with different search setting,

for MLC ReRAM using our proposed STW design.

the device level, we utilize and modify the compact model

from [13] with coefficient fitted w.r.t our experimentally mea-

sured ReRAM data, as discussed in Section II-A. Besides,

a commercial 65nm CMOS library is used. The circuit-level

simulations are conducted by Spice. For architecture-level

simulation and analysis, we leverage an in-house simulation

framework with partial data extracted from NeuroSim [24].

B. Programming Precision Evaluation

To examine the programming precision of the proposed

circuit design, we adopt the Relative Sensing Margin (RSM) as

the evaluation metric. The RSM statistically measure the margin

between two adjacent programmed conductance levels (e.g.,

level i and i+ 1), which can be expressed as:

RSM =
(μi+1 − 3σi+1)− (μi + 3σi)

(μi + 3σi)
× 100% (1)

where the μi and σi represent the conductance mean and vari-

ance of level i, respectively. Suppose the ReRAM programming

resolution is described by the conductance difference between

the adjacent levels (ΔGi = |μi+1 − μi|), choosing different

programming resolution leads to the different utilization of

entire ReRAM conductance range (Gmin = 100nS to Gmax =
1.45μS), thus providing different number of conductance levels

ReRAM can maximally represent.

To identify the maximum number of non-overlap conduc-

tance levels, we perform a searching process to set {ΔGi}.

Note that, during the searching, we force the RSM (Eq. (1))

to satisfy either one of the two margin conditions: 1) no

margin (RSM=0%) and 2) 10% margin (RSM=10%). Besides,

we consider two additional searching configurations: 1) with

linear ΔGi (i.e., μi+1 − μi = Δg, ∀i), the searching will halt

once the margin condition is not satisfied; 2) with nonlinear

ΔGi (i.e., μi+1−μi = n ·Δg, ∀i and n ∈ {1, 2, ...} is integer),

the margin between two levels will be enlarged to satisfy the

margin condition. We adopt linear conductance distribution

(a) Effective reset latency (ranges from stimulus start to reset
terminate) distribution of 4 conductance levels in Fig. 5a.

(b) Programming delay comparison of prior writ&verify schemes (re-
ported by w&v 1 [14], w&v 2 [15]), w&v sim (reproduced result
of [15] on our device) and our STW scheme on MLC ReRAM.

Fig. 6: Programming delay evaluation results of proposed self-

terminating write scheme.

with no margin in neuromorphic computing because of its fault

tolerance, and data storage needs to distinguish different states,

the non-linear conductance distribution with a 10% margin

scheme is suitable for it. Adopting the aforementioned two

margin conditions and two searching configurations in the

searching, we examine two settings and the results are shown

in Fig. 5. In each setting, we scan the programming resolu-

tion (Δg) from 20nS to 600nS with a step size of 20ns. The

Monte Carlo simulation with 104 trials per conductance level

is conducted, taken the ReRAM variation using configuration

tabulated in Fig. 1b and CMOS mismatch into consideration.

Using MLC ReRAM for neuromorphic computing, no margin

with linear ΔGi result shown in Fig. 5a indicates 4 conductance

levels (∼ 2-bits MLC) at maximum. Using MLC ReRAM as the

conventional data storage function, 10% margin with non-linear

ΔGi is the best candidate. As shown in Fig. 5b, 5 conductance

levels can achieve as well. Furthermore, the RSM between the

adjacent levels is also evaluated in Fig. 5 on the right y-axis.

C. Latency Evaluation

Since the storage usage is not the focus of this work, only

the programming delay corresponds to the conductance levels

in Fig. 5a is evaluated. Fig. 6a shows the reset latency distri-

bution with programming to different levels, we can find that

1μs is long enough for this design. The attempt to shorten the

programming pulse width will potentially cause programming

failure for conductance level indexed by 1 in Fig. 6a. Moreover,

as shown in Fig. 6b, the programming delay of the proposed

STW scheme is compared with two write&verify schemes

reported by [14], [15]. The proposed self-terminating write

method can achieve up to 29× programming speed-up on MLC

ReRAM. Two factors severely hinder the speed of write&verify

programming: 1) The long setup time in both the programming

and verifying procedure. The setup time is proportional to the

RC of the array, the parasitic capacitance of a ReRAM array is

Fig. 7: Energy Consumption Comparison of single pulse pro-

gramming scheme without STW, w&v sim (reproduced result

of [15]) and our STW scheme with deploying different DNNs.

non-trivial, especially the read verification. 2) Due to the small

read current (i.e., current used for computation), it takes a long

time to form the stable read signal for the high resistance state.

For a fair comparison, the write&verify delay of [14] is also

evaluated based on our ReRAM model (w&v sim in Fig. 6b),

whose delay is only 16% compared to [14], since 1) The intrin-

sic switch speed is different in these works; 2) The overshoot

is not taking into consideration in our write&verify simulation.

Nevertheless, the proposed STW scheme still outperforms the

simulated w&v scheme by 4.7x.

D. Energy Evaluation

According to [10], the energy consumption of writing a bit

can be estimated by E ≈ ∫
Tprog

Iwrite · Vwrite dt, where Tprog

is the sustaining time of the applied programming voltage, and

the Iwrite and Vwrite are the current through the ReRAM cells

and voltage on 1T1R cells, respectively. Based on that, Fig. 7

shows the total energy consumption of mapping the weights of

different DNN on MLC ReRAM arrays with single pulse pro-

gramming scheme without STW, w&v sim (reproduced result

of [15]) and our STW scheme, the average energy consumption

decreases to 23% and 11.2% by adopting write&verify scheme

and proposed STW scheme respectively, and up to 12× and

25× energy saving with VGG8 deployed.

E. Read Disturbance Study

As introduced in Section II-A, read disturbance is a serious

issue in practical applications, where the frequent inference

operation can significantly degrade the inference accuracy of

deployed DNN on the ReRAM crossbar accelerator. To inves-

tigate such read disturbance from the system perspective, we

leverage the modified NeuroSim for system performance eval-

uation, where we configure the bit-width of inputs and weights

to 8, crossbar size is 128-by-128. Since the configurable 1- to

2-bit cell precision can be achieved as shown in Fig. 5a, the

system simulation with different cell precision is conducted.

Take the worst case into consideration, the largest shift trend

in Fig. 2 is used in all levels. And the read disturbance effect

on the inference accuracy of different neural networks is shown

in Fig. 8. From Fig. 8, we find that the ResNet models are

vulnerable to read disturbance. After 1e3 inference cycle, the

ResNet models show obvious accuracy drops, while VGG8

model has a strong immunity to conductance shifting. Thus the

weights need to be refreshed just like DRAM once the obvious

accuracy loss occurs.

(a) VGG8 on CIFAR-10 (b) ResNet-18 on ImageNet

(c) ResNet-34 on ImageNet (d) ResNet-50 on ImageNet

Fig. 8: The impact of read disturbance on the ReRAM-based

accelerator’s performance.

77%

29%

41% 45%

63%

18%
27%

38%

VGG8 ResNet18 ResNet34 ResNet50
0%

20%

40%

60%

80%

R
ef

re
sh

 L
at

en
cy

 R
at

io cellBit=1
 cellBit=2

Fig. 9: Refresh latency ratio evaluation for restoring weight

after every 1000 inference cycles.

In addition to such degraded accuracy caused by read distur-

bance versus the number of reading cycles, We also investigate

the ratio of refresh latency. In a DNN accelerator system,

we want the refresh latency ratio as low as possible, since

the portion taken by the refresh phase can be viewed as idle

state (i.e., the system is not serving). However, lacking timely

refresh will lead to accuracy degradation. Thus, a trade-off is

needed to balance the inference accuracy and ratio of a system

idle for ReRAM refresh. We evaluate the latency ratio of the

refresh phase after every 1e3 inference cycles based on that,

and the result is depicted in Fig. 9. With our STW circuit, to

maintain the accuracy via taking a refresh per 103 inferences,

the refresh procedures only occupy 18% to 38% for latency

(VGG8 on CIFAR-10 do not need to refresh for every 1000

inference cycles), which makes great progress compared with

w&v scheme.

V. CONCLUSION

In this work, we investigate and develop a Self-Terminating

Write scheme for MLC ReRAM in a fast, accurate, and

energy-efficient fashion. As far as we know, it is the first

STW design for MLC ReRAM. The comprehensive cross-

layer (device/circuit/system) simulation is conducted to demon-

strate the necessity and superior performance of our design.

We want to highlight that such fast and precise resistive

memory cell programming is extremely critical to a variety of

resistive memory-based neuromorphic computing designs, such

as crossbar dot-product engine [5]. It may also benefit other

in-memory computing designs, e.g., bit-line computing-based

logic-in-memory.

ACKNOWLEDGMENT

This work was partially supported by the National Natural

Science Foundation of China (Grant No. 61834006, 62102257),

National Key Research and Development Program of China

(2018YFB1403400).

REFERENCES

[1] F. Liu et al., “Im3a: Boosting deep neural network efficiency via in-
memory addressing-assisted acceleration,” in GLSVLSI, 2021.

[2] H. Akinaga and H. Shima, “Resistive random access memory (reram)
based on metal oxides,” Proceedings of the IEEE, 2010.

[3] F. Liu et al., “Sme: Reram-based sparse-multiplication-engine to squeeze-
out bit sparsity of neural network,” in ICCD, 2021.

[4] Z. He et al., “Noise injection adaption: End-to-end reram crossbar non-
ideal effect adaption for neural network mapping,” in DAC, 2019.

[5] F. Liu et al., “Bit-transformer: Transforming bit-level sparsity into higher
preformance in reram-based accelerator,” in ICCAD, 2021.

[6] S. Yu, X. Guan, and H.-S. P. Wong, “On the switching parameter variation
of metal oxide rram—part ii: Model corroboration and device design
strategy,” TED, 2012.

[7] W. Chen et al., “A 16mb dual-mode reram macro with sub-14ns
computing-in-memory and memory functions enabled by self-write ter-
mination scheme,” in IEDM.

[8] E. J. Merced-Grafals et al., “Repeatable, accurate, and high speed multi-
level programming of memristor 1t1r arrays for power efficient analog
computing applications,” Nanotechnology, 2016.

[9] J. Chen et al., “A parallel multibit programing scheme with high precision
for rram-based neuromorphic systems,” TED, 2020.

[10] X. Xue et al., “A 0.13 μm 8 mb logic-based cu x si y o reram with
self-adaptive operation for yield enhancement and power reduction,” IEEE
Journal of solid-state circuits, 2013.

[11] M. Alayan et al., “Switching event detection and self-termination pro-
gramming circuit for energy efficient reram memory arrays,” IEEE
Transactions on Circuits and Systems II: Express Briefs, 2019.

[12] B. Zhang et al., “Stochastic data-driven hardware resilience to efficiently
train inference models for stochastic hardware implementations,” in
ICASSP, 2019.

[13] P.-Y. Chen and S. Yu, “Compact modeling of rram devices and its
applications in 1t1r and 1s1r array design,” TED, 2015.

[14] L. Zhao et al., “Multi-level control of conductive nano-filament evolution
in hfo2 reram by pulse-train operations,” Nanoscale, 2014.

[15] L. Gao, P. Chen, and S. Yu, “Programming protocol optimization for
analog weight tuning in resistive memories,” IEEE Electron Device
Letters, 2015.

[16] X. Guan, S. Yu, and H.-S. P. Wong, “On the switching parameter
variation of metal-oxide rram—part i: Physical modeling and simulation
methodology,” IEEE Transactions on electron devices, 2012.

[17] R. Yang et al., “2d molybdenum disulfide (mos2) transistors driving rrams
with 1t1r configuration,” in 2017 IEEE International Electron Devices
Meeting (IEDM), 2017.

[18] R. Yang et al., “Ternary content-addressable memory with mos2 transis-
tors for massively parallel data search,” Nature Electronics, 2019.

[19] Y. Cai et al., “Read disturb errors in mlc nand flash memory: Char-
acterization, mitigation, and recovery,” in 2015 45th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks, 2015.

[20] T. O. Iwasaki, S. Ning, and K. Takeuchi, “Forward and reverse biasing
in resistive memories for fast, disturb-free read, and verify,” Japanese
Journal of Applied Physics, 2013.

[21] H. Lv et al., “Beol based rram with one extra-mask for low cost, highly
reliable embedded application in 28 nm node and beyond,” in IEDM,
2017.

[22] M.-F. Chang et al., “19.4 embedded 1mb reram in 28nm cmos with 0.27-
to-1v read using swing-sample-and-couple sense amplifier and self-boost-
write-termination scheme,” in ISSCC, 2014.

[23] J. Yang et al., “24.2 a 14nm-finfet 1mb embedded 1t1r rram with a
0.022μm2 cell size using self-adaptive delayed termination and multi-cell
reference,” in ISSCC, 2021.

[24] P. Chen et al., “Neurosim: A circuit-level macro model for benchmarking
neuro-inspired architectures in online learning,” TCAD, 2018.

